10 research outputs found

    QDEE: Question Difficulty and Expertise Estimation in Community Question Answering Sites

    Full text link
    In this paper, we present a framework for Question Difficulty and Expertise Estimation (QDEE) in Community Question Answering sites (CQAs) such as Yahoo! Answers and Stack Overflow, which tackles a fundamental challenge in crowdsourcing: how to appropriately route and assign questions to users with the suitable expertise. This problem domain has been the subject of much research and includes both language-agnostic as well as language conscious solutions. We bring to bear a key language-agnostic insight: that users gain expertise and therefore tend to ask as well as answer more difficult questions over time. We use this insight within the popular competition (directed) graph model to estimate question difficulty and user expertise by identifying key hierarchical structure within said model. An important and novel contribution here is the application of "social agony" to this problem domain. Difficulty levels of newly posted questions (the cold-start problem) are estimated by using our QDEE framework and additional textual features. We also propose a model to route newly posted questions to appropriate users based on the difficulty level of the question and the expertise of the user. Extensive experiments on real world CQAs such as Yahoo! Answers and Stack Overflow data demonstrate the improved efficacy of our approach over contemporary state-of-the-art models. The QDEE framework also allows us to characterize user expertise in novel ways by identifying interesting patterns and roles played by different users in such CQAs.Comment: Accepted in the Proceedings of the 12th International AAAI Conference on Web and Social Media (ICWSM 2018). June 2018. Stanford, CA, US

    Characterizing Driving Context from Driver Behavior

    Full text link
    Because of the increasing availability of spatiotemporal data, a variety of data-analytic applications have become possible. Characterizing driving context, where context may be thought of as a combination of location and time, is a new challenging application. An example of such a characterization is finding the correlation between driving behavior and traffic conditions. This contextual information enables analysts to validate observation-based hypotheses about the driving of an individual. In this paper, we present DriveContext, a novel framework to find the characteristics of a context, by extracting significant driving patterns (e.g., a slow-down), and then identifying the set of potential causes behind patterns (e.g., traffic congestion). Our experimental results confirm the feasibility of the framework in identifying meaningful driving patterns, with improvements in comparison with the state-of-the-art. We also demonstrate how the framework derives interesting characteristics for different contexts, through real-world examples.Comment: Accepted to be published at The 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017

    Accident Risk Prediction based on Heterogeneous Sparse Data: New Dataset and Insights

    Full text link
    Reducing traffic accidents is an important public safety challenge, therefore, accident analysis and prediction has been a topic of much research over the past few decades. Using small-scale datasets with limited coverage, being dependent on extensive set of data, and being not applicable for real-time purposes are the important shortcomings of the existing studies. To address these challenges, we propose a new solution for real-time traffic accident prediction using easy-to-obtain, but sparse data. Our solution relies on a deep-neural-network model (which we have named DAP, for Deep Accident Prediction); which utilizes a variety of data attributes such as traffic events, weather data, points-of-interest, and time. DAP incorporates multiple components including a recurrent (for time-sensitive data), a fully connected (for time-insensitive data), and a trainable embedding component (to capture spatial heterogeneity). To fill the data gap, we have - through a comprehensive process of data collection, integration, and augmentation - created a large-scale publicly available database of accident information named US-Accidents. By employing the US-Accidents dataset and through an extensive set of experiments across several large cities, we have evaluated our proposal against several baselines. Our analysis and results show significant improvements to predict rare accident events. Further, we have shown the impact of traffic information, time, and points-of-interest data for real-time accident prediction.Comment: In Proceedings of the 27th ACM SIGSPATIAL, International Conference on Advances in Geographic Information Systems (2019). arXiv admin note: substantial text overlap with arXiv:1906.0540

    Toward nanofluids of ultra-high thermal conductivity

    Get PDF
    The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity. The success of developing nanofluids of superior conductivity depends thus very much on our understanding and manipulation of the morphology and the coupled transport. Nanofluids with conductivity of upper Hashin-Shtrikman (H-S) bound can be obtained by manipulating particles into an interconnected configuration that disperses the base fluid and thus significantly enhancing the particle-fluid interfacial energy transport. Nanofluids with conductivity higher than the upper H-S bound could also be developed by manipulating the coupled transport among various transport processes, and thus the nature of heat conduction in nanofluids. While the direct contributions of ordered liquid layer and particle Brownian motion to the nanofluid conductivity are negligible, their indirect effects can be significant via their influence on the particle morphology and/or the coupled transport

    DACT: Dataset of Annotated Car Trajectories

    No full text
    <b>DACT </b>contains two subsets of annotated car trajectories data. The dataset contains <b>50 </b>trajectories which cover about <b>13 </b>hours of driving data. In DACT, we manually specified <b>significant </b>driving patterns by using an interactive framework. A significant driving pattern can be anything like a <i>turn</i>, s<i>peed-up</i>, <i>slow-down</i>, etc. The annotation process consists of a crowd-sourcing task followed by comprehensive aggregation phases. The aggregation is done by two different strategies: Strict and Easy. For the first one, we used some strict constraints to aggregate crowd-sourcing results, while we used flexible constraints to generate the second subset of DACT. More information about this dataset may be find here: https://arxiv.org/abs/1705.05219 .<div>Please cite this paper "<b>Trajectory Annotation by Discovering Driving Patterns (UrbanGIS'17</b><b>)</b>", available at https://dl.acm.org/citation.cfm?doid=3152178.3152184, if you want to use this dataset.</div
    corecore